Where To Download Digital Systems Testing Testable Design

Digital Systems Testing Testable Design | 2de9ff0b58d946a5a74d1059d93d8b8

Design for Testability, Debug and Reliability

A chapter in Logic Circuit Testing: Principles of Realistic Testing and Simulation

The Art of Software Testing

Built in Test for VLSI Systems Testing and Testable Design

Digital Systems Testing and Practices System-on-Chip Test Architecture and Digital System Test and Testable Design

Digital Logic Design and Testability

A chapter in Digital Logic Design and Testability

The Digital Logic Design and Testability Book

An Introduction to Logic Circuit Testing

Using the book and the software provided, the reader can build his or her own tester arrangement to investigate key aspects of analog, digital, and mixed-signal circuits.

Plan of attack based on traditional testing, circuit design, and circuit manufacture allows the reader to appreciate a testing regime from the point of view of all the participating interests. Worked examples based on theoretical background, practical experimentation, and simulation exercises teach the reader how to test circuits thoroughly and effectively.

Sprint

Matter quality software development driven by unit tests. About This Book: Design and implement robust test components by means of the defacto unit testing standard in java. Reduce defect rate and maintenance effort, plus significantly increase code quality and development pace. Follow a step-by-step tutorial imparting the essential concepts and techniques that are common across all large software projects.

Effective Unit Testing

This updated printing of the tutorial text and reference in digital systems testing and testable design provides comprehensive, state-of-the-art coverage of the field. Included are extensive discussions of test generation, fault modeling for classic and new technologies, simulation, fault simulation, design for testability, built-in self-test, and diagnosis. Complete with numerous problems, this book is a must-have for software engineers, software managers, and CAD developers, and advanced engineering students will find this an invaluable tool to keep current with recent changes in the field.

Digital Logic Testing and Simulation

Digital logic testing has a legacy of more than 40 years. The introduction of new technologies, especially nanometer technologies with 90nm or smaller geometry, has allowed the semiconductor industry to keep pace with the increased performance/capacity demands from consumers. As a result, semiconductor test costs have been growing steadily and typically amount to 40% of today's overall product cost. This book is a comprehensive guide to new VLSI Testing and Design-for-Testability techniques that will allow students, researchers, companies, and VLSI designers to master quickly System-on-Chip Test architecture, for test debug and diagnosis of digital, memory, and analog/mixed-signal designs. Emphasizes VLSI Test Principles and Design for Testability architectures, with numerous illustrations/examples. Most up-to-date coverage available, including Fault Tolerance, Low-Power Testing, Defect and Error Tolerance, Network-on-Chip (NoC) Testing, Software-based Self-Testing, FPGA Testing, MEMS Testing, and System-on-Platform (SoP) Testing. Business-Based Test Coverage includes the entire spectrum of VLSI testing and DFT architectures, from digital and analog, to memory circuits, and fault diagnosis and repair. How to build your own tester and develop efficient and effective test systems for your own applications.

The Art of Software Testing

An Introduction to Logic Circuit Testing provides a detailed coverage of techniques for test generation and testable design of digital electronic circuits/systems. The material covered in the book is sufficient for a course, or a part of, in digital circuit testing for senior-level undergraduate and first-year graduate students in Electrical Engineering and Computer Science. The book will also be a valuable resource for engineers working in the industry. This book has four chapters. Chapter 1 deals with various topics that may occur in very large scale integration (VLSI) digital circuits. Chapter 2 introduces the major concepts of all test generation techniques such as dependency, fault coverage, sensitivity analysis, and backtracking. Chapter 3 introduces the key concepts of testability, followed by some ad hoc design-for-testability rules that can be used to enhance testability of combinational circuits. Chapter 4 deals with test generation and response evaluation techniques used in Built-in Self-Test (BIST) and built-in self-test (BIST) schemes for VLSI chips. Table of Contents: Introduction / Fault Detection in Logic Circuits / Design for Testability / Built-in Self-Test / References

Built In Test for VLSI Systems Testing and Testable Design

Effective Software Testing explores critically important best practices, pitfalls, and solutions. Gleaned from the author's extensive practical experience, these concrete items will enable quality assurance professionals and test managers to immediately enhance their understanding and skills, avoid costly mistakes, and implement a state-of-the-art testing program. This book places special emphasis on the integration of testing into all phases of the software development life cycle—from requirements definition to design and final coding.

The fifty lessons provided here focus on the key aspects of software testing: test planning, design, documentation, execution, managing the testing team, unit testing, automated testing, functional testing, and more. You will learn to: use testing efforts on a prioritized feature schedule; evaluate test preparation and execution; define the testing team roles and responsibilities; design test procedures as soon as requirements are available. Drive effective test cases from requirements; avoid constraints and detailed data elements in test procedures; make unit test execution part of the build process; use logging to increase testability; test automated test tools; develop a test plan; test automated test tools; test automated test tools; test automated test tools; and test automated test tools. This book provides ready access to the expertise and advice of one of the world's foremost software quality and testing authorities.

Digital Systems Testing and Testable Design

Y our road map for meeting today's digital testing challenges. Today, digital logic devices are common in products that impact public safety, including applications in transportation and human implants. A correlative testing has become more critical to reliability, safety, and the bottom line. Yet, as digital systems become more ubiquitous and complex, the challenge of testing them has become more difficult. As one development group designing a RISC stated, "the work required to..." the client of this chip's size approached the amount of effort required to design it." A valued reference for nearly two decades, Digital Logic Testing and Simulation has been significantly revised and

Page 1/5
updated for designers and test engineers who must meet this challenge. There is no single solution to the testing problem. Organized in an easy-to-follow, sequential format, this Second Edition familiarizes the reader with the many different strategies for testing and their applications, and assesses the strengths and weaknesses of the various approaches. The book reviews the building blocks of a successful testing strategy and guides the reader on choosing the best solution for a particular application. Digital Logic Testing and Simulation, Second Edition covers such key topics as: * Binary Decision Diagrams (BDDs) and cycle-based simulation * Test architecture/Standard Test Interface Language (STIL) * Practical algorithms written in a Hardware Design Language (HDL) * Fault tolerance * Behavioral Automated Test Pattern Generation (ATPG) * The development of the Test Design Expert (TDX), the many obstacles encountered and lessons learned in creating this novel testing approach Up-to-date and comprehensive, Digital Logic Testing and Simulation is an important resource for anyone charged with pinpointing faulty products and assuring quality, safety, and profitability.

Digital Systems Testing and Testable Design

Explains the importance of the test-driven environment in assuring quality while developing software, introducing patterns, principles, and techniques for testing any software system.

Testing with Unit

System-on-a-chip (SoC) has become an essential technique to lower product costs and maximize power efficiency, particularly as the mobility and size requirements of electronics continues to grow. It has therefore become increasingly important for electrical engineers to develop a strong understanding of the key stages of hardware description language (HDL) based on field-programmable gate array (FPGA) devices. Heded and revised through years of classroom use, this focuses on developing, verifying, and synthesizing designs of practical digital systems using the most widely used hardware description Language. Verilog HDL. Explains how to perform synthesis and verification to achieve optimized synthesis results and compiler times. Verilog syntax illustrates the entire design and verification process, from real-world design examples such as LED and LCD displays, GPUs, UART, timers, and CPU Emphasizes design implementation tradeoff options, with coverage of ASICs and FPGAs. Provides an introduction to design for testability on the principles of design for testability for more advanced digital technology. Offers an in-depth discussion of test sequence generation and response data compression, including pseudorandom sequence generators, the mathematics of shift registers, and the potential for built-in testing. A los details random and memory testing and the problems of assessing the efficiency of such tests, and the limitations and practical concerns of built-in testing.

Introduction to Software Testing

A textbook in digital system testing and testable design incorporating a significant amount of new material related to recently developed technologies, this book offers comprehensive and state-of-the-art treatment of both testing and testable design.

Digital System Design with Verilog

"It is not in the interest of business leaders to turn public schools into vocational schools. We can teach students how to be marketing people. We can teach them how to manage balance sheets," stated Louis V. Gerstner Jr. of IBM at the recent Education Summit meeting in New York. He continued, "What is killing us is having to teach them to read and to compute and to communicate and to think. (TIME, April 8, 1996, page 40). The last sentence is most significant because it sets requirements for education and hence gives the specification for a textbook. The textbook should contain all the necessary scientific information that the reader will need to practice the art in the technological world. In addition to the scientific detail, illustrative examples are necessary. The book should teach science without restricting creativity, and it should prepare the student for solving problems never encountered before. In pursuing our goal of advancing the frontiers of test technology, we must cover applications, education, and research. This is the first textbook in the "Frontiers" series. Semiconductor memories represent the frontier of VLSI in more ways than one. First, memories have always used more aggressive physical design rules and higher densities than other VLSI chips, thus advancing the semiconductor technology. Second, the availability of low-cost memory chips makes numerous software applications possible by fueling the demand for all types of chips.

Digital Systems Design with Programmable Logic

A superior primer on software testing and quality assurance, from integration to execution and automation. This important new work fills the pressing need for a user-friendly text that aims to provide software engineers, software quality professionals, software developers, and students with the fundamental developments in testing theory and common testing practices. Software Testing and Quality Assurance. Thiesy and Practice equips readers with a solid understanding of: Practices that support the production of quality software. Software testing techniques. Life-cycle models for requirements, defects, test cases, and test results. Processes models for units, integration, system, and acceptance testing. How to build test teams, including recruiting and retaining test engineers. Quality Models. Capability Maturity Model, Testing Maturity Model, and Test Process Improvement Model. Expertly balancing theory with practice, and complemented with an abundance of pedagogical tools, including test questions, examples, teaching suggestions, and chapter summaries, this book is a valuable, self-contained tool for professionals and an ideal introductory text for courses in software testing, quality assurance, and software engineering.

Digital Systems Testing and Testable Design

This book is a self-contained introduction to all aspects of microelectronic (IC) testing. It includes the theory necessary for advanced students as well as reference to industrial practice and economics that will interest designers in industry. Chapters cover digital circuit testing and the growing area of mixed circuits, used particularly in signal processing.

Digital Systems Designs and Practices

More than ever, mission-critical and business-critical applications depend on object-oriented (OO) software. Testing techniques tailored to the unique challenges of OO technology are necessary to achieve high reliability and quality. "Testing Object-Oriented Systems: Models, Patterns, and Tools" is an authoritative guide to designing and automating test suites for OO applications. This text for non-CS majors explains why testing must be model-based and provides in-depth coverage of techniques to develop testable models from state machines, combinational logic, and the Unified Modeling Language (UML). It introduces the test design patterns presents 37 patterns that explain how to design responsibility-based test suites, how to tailor integration and regression testing for OO code, how to test reusable components and frameworks, and how to develop highly effective test suites that can be automated and reused. It also describes how to design code specification-based assertions to offset testability issues due to inheritance and polymorphisms. It presents micro-patterns present oracle strategies, practical solutions for one of the hardest problems in test design. Seventeen design patterns explain how to automate your test suites with a coherent OO test harness framework. The author provides thorough coverage of testing issues such as: The bug hazards of OO programming and differences from testing procedural code. How to design responsibility-based tests for classes, clusters, and subsystems using class invariants, interface data flow models, hierarchical state machines, class associations, and scenario analysis. How to support reuse by effective testing of abstract classes, generic classes, components, and frameworks. How to choose an integration strategy that supports iterative and incremental development. How to achieve comprehensive system testing with testable use cases. How to choose a regression test approach. How to develop expected test results and evaluate the post-test state of an object. How to automate testing with assertions, OO test drivers, stubs, and test frameworks. Real-world experience, world-class best practices, and the latest research in object-oriented testing are included. Practical examples illustrate test design and test automation for Ada 95, C++, Eiffel, Java, Objective-C, and Smalltalk. The UML is used throughout, but the design patterns apply to systems developed with any OO language or methodology. 003030090014062001

System-on-Chip Test Architectures

This book provides broad and comprehensive coverage of the entire EDA flow. EDA practitioners and researchers in need of fluency in an "adjacent" field will find this an ideal guide to the state of the art. In one volume, it presents the fundamental technology of design for testability and test-driven design, up to some of the most advanced techniques of system-on-chip (SOC) test architecture and test generation. It provides a complete overview of the test generation process for SOC design, from test generation to test application, and the technology necessary to achieve high-quality, state-of-the-art test results. It introduces the reader to the building blocks of a successful test strategy and guides the reader on choosing the best solution for a particular application. It also provides an introduction to design for testability and test-driven design, up to some of the most advanced techniques of system-on-chip (SOC) test architecture and test generation. It provides a complete overview of the test generation process for SOC design, from test generation to test application, and the technology necessary to achieve high-quality, state-of-the-art test results.
Digital System Test and Testable Design

This textbook provides a comprehensive and detailed treatment of digital systems testing and testable design. It covers thoroughly both the fundamental concepts and the latest advances in this field. The book presents only theoretical material that supports practical applications. Successfully used worldwide, this book is an invaluable tool for test engineers, ASIC and System designers, and CAD developers.

Testing Object-Oriented Systems

From three design partners at Google Ventures, a unique five-day process—called the sprint—for solving tough problems using design, prototyping, and testing ideas with customers.

Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits

This book is the second of two volumes addressing the design challenges associated with new generations of semiconductor technology. The various chapters are compiled from tutorials presented at workshops in recent years by prominent authors from all over the world. Technology, productivity, and quality are the main aspects under consideration to establish the major requirements for the design and test of upcoming systems on a chip.

A Practitioner’s Guide to Software Test Design

Written by a testing expert at Google Ventures, this unique volume contains current test design approaches and focuses only on software test design. Copeland illustrates each test design through detailed examples and step-by-step instructions.

Verification, Validation and Testing in Software Engineering

In the past few years, reliable hardware system design has become increasingly important in the computer industry. Digital Circuit Testing and Testability is an easy-to-use introduction to the practices and techniques in this field. Parag K. Lala writes in a user-friendly and tutorial style, making the book easy to read, even for the newcomer to fault-tolerant system design. Each informative chapter is self-contained, with little or no previous knowledge of a topic assumed. Extensive references follow each chapter, making further research in a particular area easily available. Each chapter covers a different aspect or technological component of fault-tolerant system design, and this book is an excellent compilation of up-to-date information in an area where such a book is needed.

System Engineering Analysis, Design, and Development

PRINCIPLES OF MODERN DIGITAL DESIGN FROM UNDERLYING PRINCIPLES TO IMPLEMENTATION—A THOROUGH INTRODUCTION TO DIGITAL LOGIC DESIGN With this book, readers discover the connection between logic design principles and theory and the logic design and optimization techniques used in practice. Therefore, they not only learn how to implement current design techniques, but also how those techniques were developed and why they work. With a deeper understanding of the underlying principles, readers become better problem-solvers when faced with new and difficult digital design challenges. Principles of Modern Digital Design begins with an examination of number systems and binary code followed by the fundamental concepts of digital logic. Next, readers advance to combinational logic design. Aimed at this foundation, they are then introduced to VHDL, a powerful language used to describe the function of digital circuits and systems. All the major topics needed for a thorough understanding of modern digital design are presented, including Fundamentals of synchronous sequential circuits and synchronous sequential circuit design. Combining logic design using VHDL, Counter design. Sequential circuit design using VHDL. A synchronous sequential circuits, VHDL-based logic design examples are provided throughout the book to illustrate both the underlying principles and practical design applications. Each chapter is followed by exercises that enable readers to put their skills into practice by solving realistic digital design problems. A companion website with Q un platform enables readers to replicate the book’s examples and perform the exercises. This book can be used for either a two- or one-semester course for undergraduate students in electrical and computer engineering and computer science. Its thorough explanation of theory, coupled with examples and exercises, enables both students and practitioners to master and implement modern digital design techniques with confidence.

Software Testing and Quality Assurance

This book introduces several novel approaches to pave the way for the next generation of integrated circuits, which can be successfully and reliably integrated, even in safety-critical applications. The authors describe new measures to address the rising challenges in the field of design for testability, debug, and reliability, as strictly required for state-of-the-art circuit designs. In particular, this book combines formal techniques, such as the SAT-ability (SAT) problem and the Bounded Model Checking (BMC), to address the arising challenges concerning the increase in test data volume, as well as test application time and the required reliability. All methods are discussed in detail and evaluated extensively, while considering industry-relevant benchmark candidates. All measures have been integrated into a common framework, which implements standardized software/hardware interfaces.

Routing in the Third Dimension

The classic, landmark work on software testing The hardware and software of computing have changed markedly in the three decades since the first edition of The Art of Software Testing. But this book’s powerful underlying analysis has stood the test of time. Whereas most books on software testing target particular development techniques, languages, or testing methods, The Art of Software Testing, Third Edition provides a brief but powerful and comprehensive presentation of time-proven software testing approaches. If your software development project is mission critical, this book is an investment that will pay for itself with the first bug you find. The new Third Edition explains how to apply the book’s classic principles to today’s hot topics including testing apps for iPhones, iPads, Blackberrys, Androids, and other mobile devices Collaborative (user) programming and testing Testing for Internet applications, e-commerce, and agile programming environments Whether you’re a student looking for a testing guide you’ll use for the rest of your career, an IT manager overseeing a software development team, The Art of Software Testing, Third Edition is an expensive book that will pay for itself many times over.

Principles of Modern Digital Design

The modern electronic testing has a forty-year history. Test professionals hold some fairly large conferences and numerous workshops, have a journal, and there are over one hundred books on testing. Still, a full course on testing is offered only at a few universities, mostly by professors who have a research interest in this area. Apparently, most professors would not have taken an courses on the subject while they were students. Other than the computer engineering curriculum being too crowded, the major reason cited for the absence of a course on electronic testing is the lack of a suitable textbook. For VLSI, the foundation was provided by semiconductor device technology, circuit design, and electronic testing. In a computer engineering curriculum, therefore, it is necessary that foundations should be taught before applications. The field of VLSI has expanded to systems-on-a-chip, which include digital, memory, and mixed-signal systems. To our knowledge, this is the first textbook to cover all three types of electronic circuits. We have written this textbook for an undergraduate “foundations” course on electronic testing. Obviously, it is too voluminous for a one-semester course and a teacher will have to select from the topics. We did not restrict such freedom because the selection may depend upon the individual expertise and interests. Besides, there is merit in having a larger book that will retain its usefulness for the owner even after the completion of the course. With a limited edition, we address the needs of these other groups of readers.

VLSI Testing

This key text addresses the complex computer chips of tomorrow which will consist of several layers of metal interconnect, making the interconnect within a chip or a multichip module a three-dimensional problem. You’ll find an insightful approach to the algorithmic, cell design issues in chip and MCM routing with an emphasis on techniques for eliminating routing area.

Electronic Design Automation

This book is about digital system testing and testable design. The concepts of testing and testability are treated together with digital design practices and methodologies. The book uses Verilog models and testbenches for implementing and explaining fault simulation and test generation algorithms. Extensive use of Verilog and Verilog PLI for test applications is what distinguishes this book from other test and testability books. Verilog eliminates ambiguities in test algorithms and BIST and DFT hardware architectures,
and it clearly describes the architecture of the testability hardware and its test sessions. Describing many of the on-chip decomposition algorithms in Verilog helps to explain these algorithms in terms of hardware overhead, and thus feasibility of using them for System-on-Chip designs. Extensive use of testbench and testbench development techniques is another unique feature of this book. Using PL in developing testbenches and virtual testers provides a powerful programming tool, interfaced with hardware described in Verilog. This mixed hardware/software environment facilitates description of complex test programs and test strategies.

Integrated Circuit Test Engineering

This book presents the biophysics of hair: it covers the structure of hair, its mechanical properties, nanomechanical characterization, tensile deformation, tribological characterization, the thickness distribution and binding interactions on hair surface.

Testing and Testable Design of High-Density Random-Acess Memories

Device testing represents the single largest manufacturing expense in the semiconductor industry, costing over $40 billion a year. The most comprehensive and wide-ranging book of its kind, Testing of Digital Systems covers everything you need to know about this vitally important subject. Starting right from the basics, the authors take the reader through automatic test pattern generation and built-in self-test of digital circuits before moving on to more advanced topics such as UUT testing, functional testing, delay fault testing, memory testing, and fault diagnosis. The book includes detailed treatment of the latest techniques including test generation for various fault models, discussion of testing techniques at different levels of integrated circuit hierarchy and a chapter on system-on-a-chip test synthesis. Written for students and engineers, it is also an excellent senior/graduate level textbook and a valuable reference.

VLSI Testing

Summary

Effective Unit Testing is written to show how to write good tests—tests that are concise and to the point, expressive, useful, and maintainable. Inspired by Roy Osherove's bestselling The Art of Unit Testing, this book focuses on tools and practices specific to the Java world. It introduces you to emerging techniques like behavior-driven development and specification by example, and shows you how to add robust practices into your toolkit. About Testing Test the test cases you assemble before you write them down into a full application, and you'll get better software. Java developers, there's now a decade of experience with well-crafted tests that anticipate problems, identify known and unknown dependencies in the code, and allow you to test components both in isolation and in the context of a full application. A bout this B ook E ffective Unit Testing tells Java developers how to write unit test cases that are concise, expressive, useful, and maintainable. Offering crisp explanations and easy-to-absorb examples, it introduces emerging techniques like behavior-driven development and specification by example. Programmers who are already familiar with unit testing will learn the current state of the art. Those who are new to the game will learn practices that will serve them well for the rest of their career. Purchase of the book comes with an offer of a free PDF, ePub, and Kindle ebook from the author. A sample available is all code from the book. A bout the A uthor Lance Koksela is a coach, trainer, and consultant. He hones on open source projects, helps companies improve software development through classes and conferences around the world. Lance is the author of Test Driven, also published by Manning.

What's Inside & Approach to unit testing Choosing a best-of-breed tools Writing tests using dynamic languages Effective test automation Table of Contents PART I Foundations The promise of good tests In search of good tests doubles PART 2 CATALOG Readability Maintainability Testworthiness PART 3 DIVERSIONS Testable design Writing tests in other JVM languages Speeding up test execution

Testing of Digital Systems

How do successful agile teams buy bug-free, maintainable software—iteration after iteration? The answer is: By seamlessly combining development and testing. On such teams, the developers write testable code that enables them to verify it using various types of automated tests. This approach keeps regressions at bay and prevents “testing crunch”—whether it’s happening. Writing testable code, however, is often difficult, as it requires knowledge and skills that cut across multiple disciplines. In Developer Testing, leading test expert and mentor Alexander Tarlinder concisely, focused guidance for making new and legacy code far more testable. Tarlinder helps you answer questions like: When have I tested this enough? How many tests do I need to write? What should my tests verify? You’ll learn how to design for testability and dieze test cases and strategies, troubleshooting, dependency breaking, unit testing, data-driven testing, and test-driven development to achieve the highest possible confidence in your software. Through practical examples in Java, C#, Groovy, and Ruby, you’ll discover what works—and what doesn’t. You can quickly begin using Tarlinder’s technique-dedicated insights with the most languages and toolkits while not getting buried in specialist details. The author helps you adapt your current programming style for testability, making your code, and enrich your day-to-day experience as a software professional. With this guide, you will understand the discipline and vocabulary of testing from the developer’s standpoint. Base developers on well-established testing techniques and best practices. Recognize code constructs that impact testability Effectively name, organize, and execute unit tests Master the essentials of classic and “mockist-style” TD D. Leverage test doubles of programming by contract, even without runtime support. Take control of dependencies between classes, components, layers, and tiers. Handle combinatorial explosions of test cases, or scenarios requiring many similar tests. Man a ge duplication when it can’t be eliminated. Actively maintain and improve your test suites Perform more advanced tests at the integration, system, and end-to-end levels Develop an understanding of the organizational context influences quality assurance Establish well-balanced and effective testing strategies suitable for agile teams.

Design of Systems on a Chip: Design and Test

Praise for the first edition: "This excellent text will be useful to every system engineer (SE) regardless of the domain. It covers ALL relevant SE material and does so in a very clear, methodical fashion. The breadth and depth of the author's presentation is truly unique and principles and practices is outstanding." —Philip Allen This textbook presents a comprehensive overview of system engineering using a reorganized set of concepts, principles, and design approaches. The methods presented in this text apply to virtually any type of human system — small, medium, and large organizations involving development projects delivering engineered systems/services across multiple business sectors such as medical/transportation, educational, governmental, aerospace and defense, utilities, political, and charitable, among others. Provides a common focal point for “bridging-the-gap” between and unifying System Users, System Acquirers, multi-discipline System Engineering, and Project, functional, and architectural disciplines. The book includes detailed treatment of the latest techniques including test generation for various fault models, discussion of testing techniques at different levels of integrated circuit hierarchy and a chapter on system-on-a-chip test synthesis. Written for students and engineers, it is also an excellent senior/graduate level textbook and a valuable reference.

Logic Minimization A lgorithms for VLSI Synthesis

This textbook provides a comprehensive and detailed treatment of digital systems testing and testable design. It covers thoroughly both the fundamental concepts and the latest advances in this rapidly changing field, and presents only theoretical material that supports practical applications. Successfully used worldwide, this book is an invaluable tool for test engineers, ASICs and system designers, and CAD developers.

Effective Software Testing

The roots of the project which culminates with the writing of this book can be traced to the work on logic synthesis started in 1979 at the IBM Watson Research Center and at the University of California, Berkeley. During the preliminary phases of these projects, the importance of logic minimization for the synthesis of area and performance effective circuits clearly emerged. In 1980, Richard Patt and Bruce Porter, two of the authors of this book, developed an algorithm for logic minimization that was incorporated in the first commercial logic synthesis tool. The most comprehensive and wide-ranging book of its kind, Testing of Digital Systems covers everything you need to know about this vitally important subject. Starting right from the basics, the authors take the reader through automatic test pattern generation and built-in self-test of digital circuits before moving on to more advanced topics such as UUT testing, functional testing, delay fault testing, memory testing, and fault diagnosis. The book includes detailed treatment of the latest techniques including test generation for various fault models, discussion of testing techniques at different levels of integrated circuit hierarchy and a chapter on system-on-a-chip test synthesis. Written for students and engineers, it is also an excellent senior/graduate level textbook and a valuable reference.

VLSI Test Principles and A rchitectures

The book presents the biophysics of hair: it covers the structure of hair, its mechanical properties, nanomechanical characterization, tensile deformation, tribological characterization, the thickness distribution and binding interactions on hair surface.
the book's companion Web site, zwolinski.org. Coverage includes Using electronic design automation tools with programmable logic and ASIC technologies Essential principles of Boolean algebra and combinational logic design, with discussions of timing and hazards Core modeling techniques: combinational building blocks, buffers, decoders, encoders, multiplexers, adders, and parity checkers Sequential building blocks: latches, flip-flops, registers, counters, memory, and sequential multipliers Designing finite state machines: from ASM chart to D flip-flops, next state, and output logic Modeling interfaces and packages with SystemVerilog Designing testbenches: architecture, constrained random test generation, and assertion-based verification Describing RTL and FPGA synthesis models Understanding and implementing Design-for-Test Exploring anomalous behavior in asynchronous sequential circuits Performing Verilog AMS and mixed-signal modeling Whatever your experience with digital design, older versions of Verilog, or VHDL, this book will help you discover SystemVerilog's full power and use it to the fullest.

Digital Systems Testing & Testable Design

Design-for-test for Digital IC's and Embedded Core Systems

Hardware -- Logic Design.

Digital Circuit Testing and Testability

Extensively class-tested, this textbook takes an innovative approach to software testing: it defines testing as the process of applying a few well-defined, general-purpose test criteria to a structure or model of the software. It incorporates the latest innovations in testing, including techniques to test modern types of software such as OO, web applications, and embedded software. The book contains numerous examples throughout. An instructor's solution manual, PowerPoint slides, sample syllabi, additional examples and updates, testing tools for students, and example software programs in Java are available on an extensive website.